skip to main content


Search for: All records

Creators/Authors contains: "Debashis, Punyashloka"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
  2. Abstract

    Bayesian networks are powerful statistical models to understand causal relationships in real-world probabilistic problems such as diagnosis, forecasting, computer vision, etc. For systems that involve complex causal dependencies among many variables, the complexity of the associated Bayesian networks become computationally intractable. As a result, direct hardware implementation of these networks is one promising approach to reducing power consumption and execution time. However, the few hardware implementations of Bayesian networks presented in literature rely on deterministic CMOS devices that are not efficient in representing the stochastic variables in a Bayesian network that encode the probability of occurrence of the associated event. This work presents an experimental demonstration of a Bayesian network building block implemented with inherently stochastic spintronic devices based on the natural physics of nanomagnets. These devices are based on nanomagnets with perpendicular magnetic anisotropy, initialized to their hard axes by the spin orbit torque from a heavy metal under-layer utilizing the giant spin Hall effect, enabling stochastic behavior. We construct an electrically interconnected network of two stochastic devices and manipulate the correlations between their states by changing connection weights and biases. By mapping given conditional probability tables to the circuit hardware, we demonstrate that any two node Bayesian networks can be implemented by our stochastic network. We then present the stochastic simulation of an example case of a four node Bayesian network using our proposed device, with parameters taken from the experiment. We view this work as a first step towards the large scale hardware implementation of Bayesian networks.

     
    more » « less
  3. null (Ed.)
  4. Abstract

    Spin Orbit Torque Magnetic RAM (SOT-MRAM) is emerging as a promising memory technology owing to its high endurance, reliability and speed. A critical factor for its success is the development of materials that exhibit efficient conversion of charge current to spin current, characterized by their spin Hall efficiency. In this work, it is experimentally demonstrated that the spin Hall efficiency of the industrially relevant ultra-thin Ta can be enhanced by more than 25× when a monolayer (ML) WSe2is inserted as an underlayer. The enhancement is attributed to spin absorption at the Ta/WSe2interface, suggested by harmonic Hall measurements. The presented hybrid spin Hall stack with a 2D WSe2underlayer has a total body thickness of less than 2 nm and exhibits greatly enhanced spin Hall efficiency, which makes this hybrid a promising candidate for energy efficient SOT-MRAM.

     
    more » « less
  5. Stochastic oscillators based on emerging nanodevices are attractive because of their ultra-low power requirement and the ability to exhibit stochastic resonance, a phenomenon where synchronization to weak input signals is enabled due to ambient noise. In this work, a low barrier nanomagnet-based stochastic oscillator is demonstrated, whose output jumps spontaneously between two states by harnessing the ambient thermal noise, requiring no additional power. By utilizing spin–orbit torque in a three-terminal device configuration, phase synchronization of these oscillators to weak periodic drives of particular frequencies is demonstrated. Experiments are performed to show the tunability of this synchronization frequency by controlling an electrical feedback parameter. The current required for synchronization is more than eight times smaller than that required for the deterministic switching of similar nanomagnetic devices. A model based on Kramers’ transition rate in a symmetric double well potential is adopted and dynamical simulations are performed to explain the experimental results.

     
    more » « less
  6. Abstract

    Spin based logic devices have attracted a lot of research interest due to their potential low-power operation, non-volatility and possibility to enable new computing applications. Here we present an experimental demonstration of a novel spin logic device working at room temperature without the requirement of an external magnetic field. Our device is based on a pair of coupled in-plane magnetic anisotropy (IMA) magnet and a perpendicular magnetic anisotropy (PMA) magnet. The information written in the state of the IMA magnet is transferred to the state of the PMA magnet by means of a symmetry breaking dipolar field, while the two layers are electrically isolated. In addition to having the basic tenets of a logic device, our device has inbuilt memory, taking advantage of the non-volatility of nanomagnets. In another mode of operation, the same device is shown to have the functionality of a true random number generator (TRNG). The combination of logic functionality, nonvolatility and capability to generate true random numbers all in the same spin logic device, makes it uniquely suitable as a hardware for many new computing ideas.

     
    more » « less
  7. Abstract

    Employing the probabilistic nature of unstable nano-magnet switching has recently emerged as a path towards unconventional computational systems such as neuromorphic or Bayesian networks. In this letter, we demonstrate proof-of-concept stochastic binary operation using hard axis initialization of nano-magnets and control of their output state probability (activation function) by means of input currents. Our method provides a natural path towards addition of weighted inputs from various sources, mimicking the integration function of neurons. In our experiment, spin orbit torque (SOT) is employed to “drive” nano-magnets with perpendicular magnetic anisotropy (PMA) -to their metastable state, i.e. in-plane hard axis. Next, the probability of relaxing into one magnetization state (+mi) or the other (−mi) is controlled using an Oersted field generated by an electrically isolated current loop, which acts as a “charge” input to the device. The final state of the magnet is read out by the anomalous Hall effect (AHE), demonstrating that the magnetization can be probabilistically manipulated and output through charge currents, closing the loop from charge-to-spin and spin-to-charge conversion. Based on these building blocks, a two-node directed network is successfully demonstrated where the status of the second node is determined by the probabilistic output of the previous node and a weighted connection between them. We have also studied the effects of various magnetic properties, such as magnet size and anisotropic field on the stochastic operation of individual devices through Monte Carlo simulations of Landau Lifshitz Gilbert (LLG) equation. The three-terminal stochastic devices demonstrated here are a critical step towards building energy efficient spin based neural networks and show the potential for a new application space.

     
    more » « less